Liquefaction of H2 molecules upon exterior surfaces of carbon nanotube bundles
نویسندگان
چکیده
We have used molecular dynamics simulations to investigate interaction of H2 molecules on the exterior surfaces of carbon nanotubes sCNTsd: single and bundle types. At 80 K and 10 MPa, it is found that charge transfer occurs from a low curvature region to a high curvature region of the deformed CNT bundle, which develops charge polarization only on the deformed structure. The long-range electrostatic interactions of polarized charges on the deformed CNT bundle with hydrogen molecules are observed to induce a high local-ordering of H2 gas that results in hydrogen liquefaction. Our predicted heat of hydrogen liquefaction on the CNT bundle is 97.6 kcal kg−1. On the other hand, hydrogen liquefaction is not observed in the CNT of a single type. This is because charge polarization is not developed on the single CNT as it is symmetrically deformed under the same pressure. Consequently, the hydrogen storage capacity on the CNT bundle is much higher due to liquefaction than that on the single CNT. Additionally, our results indicate that it would also be possible to liquefy H2 gas on a more strongly polarized CNT bundle at temperatures higher than 80 K. © 2005 American Institute of Physics. fDOI: 10.1063/1.1929084g
منابع مشابه
Physical adsorption between mono and diatomic gases inside of Carbon nanotube with respect to potential energy
In this paper we have down three theoretical study by using Monte Carlo simulation and Mm+,AMBER and OPLS force field. The calculations were carried out using Hyper Chem professional,release 7.01 package of program. first we have studied the interaction of H2 molecule and He atomwith single-walled carbon nanotube at different temperature. For doing this study we placed H2 andHe in the center an...
متن کاملDFT Investigations for sensing capability of a single-walled Carbon nanotube for adsorptions H2, N2, O2 and CO molecules
Single-walled carbon nanotubes (SWCNTs) have a great deal of attention due to their unique properties. These properties of SWCNTs can be used in various devices such as nanosensors. SWCNTs nanosensors have fast response time and high sensitivity to special gas molecules which is very favorable for important applications. Recently, gas adsorption over outer surface of SWCNTs nanosensors was argu...
متن کاملDFT Investigations for sensing capability of a single-walled Carbon nanotube for adsorptions H2, N2, O2 and CO molecules
Single-walled carbon nanotubes (SWCNTs) have a great deal of attention due to their unique properties. These properties of SWCNTs can be used in various devices such as nanosensors. SWCNTs nanosensors have fast response time and high sensitivity to special gas molecules which is very favorable for important applications. Recently, gas adsorption over outer surface of SWCNTs nanosensors was argu...
متن کاملInvestigation of chemical adsorption of CO, CO2, [12 and NO molecules on inside and outside of single-wall nanotube using HF and DET calculations
In this research. CO gas molthules were approached to single-wall carbon nanotube (SWNT) and (6,0) CNTsurface from carbon side and oxygen side in three states (top, bridge, centre) and two shapes ( erlica I.horizontal), then adsorption energies were calculated by B3TYP/6-310 B3LYPI3-216" and Hge3-210"methods after that they were compared m order to obtain the most stable adsorption state. OFT a...
متن کاملEffective Mechanical Properties of Nanocomposites Reinforced With Carbon Nanotubes Bundle
Nanocomposites made of Carbon Nanotube (CNT) bundles have attracted researchers’ attention due to their unusual properties such as: light weight, flexibility and stiffness. In this paper, the effects of straight and rope-shaped bundles on nanocomposite effective mechanical properties are investigated. First, FEA models are created consisting of CNTs with different shapes of straight and rope-...
متن کامل